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Abstract

The capacity region of a two-transmitter Gaussian multiple access channel (MAC) under average input power
constraints is studied, when the receiver employs a zero-threshold one-bit analog-to-digital converter (ADC). It is
proved that the input distributions of the two transmitters that achieve the boundary points of the capacity region
are discrete. Based on the position of a boundary point, upper bounds on the number of the mass points of the
corresponding distributions are derived. Furthermore, a lower bound on the sum capacity is proposed that can be
achieved by time division with power control. Finally, inspired by the numerical results, the proposed lower bound
is conjectured to be tight.

I. INTRODUCTION

The energy consumption of an analog-to-digital converter (ADC) (measured in Joules/sample) grows
exponentially with its resolution (in bits/sample) [1], [2]. When the available power is limited, for example,
for mobile devices with limited battery capacity, or for wireless receivers that operate on limited energy
harvested from ambient sources [3], the receiver circuitry may be constrained to operate with low resolution
ADCs. The presence of a low-resolution ADC, in particular a one-bit ADC at the receiver, alters the channel
characteristics significantly. Such a constraint not only limits the fundamental bounds on the achievable
rate, but it also changes the nature of the communication and modulation schemes approaching these
bounds. For example, in a real additive white Gaussian noise (AWGN) channel under an average power
constraint on the input, if the receiver is equipped with a K-bin (i.e., log2K-bit) ADC front end, it is
shown in [4] that the capacity-achieving input distribution is discrete with at most K + 1 mass points.
This is in contrast with the optimality of the Gaussian input distribution when the receiver has infinite
resolution.

Especially with the adoption of massive multiple-input multiple-output (MIMO) receivers and the mil-
limeter wave (mmWave) technology enabling communication over large bandwidths, communication sys-
tems with limited-resolution receiver front ends are becoming of practical importance. Accordingly, there
have been a growing research interest in understanding both the fundamental information theoretic limits
and the design of practical communication protocols for systems with finite-resolution ADC front ends.
In [5], the authors show that for a Rayleigh fading channel with a one-bit ADC and perfect channel state
information at the receiver (CSIR), quadrature phase shift keying (QPSK) modulation is capacity-achieving.
In case of no CSIR, [6] shows that (QPSK) modulation is optimal when the signal-to-noise (SNR) ratio
is above a certain threshold, which depends on the coherence time of the channel, while for SNRs below
this threshold, on-off QPSK achieves the capacity. For the point-to-point multiple-input multiple-output
(MIMO) channel with a one-bit ADC front end at each receive antenna and perfect CSIR, [7] shows that
QPSK is optimal at very low SNRs, while with perfect channel state information at the transmitter (CSIT),
upper and lower bounds on the capacity are provided in [8].
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Figure 1: A two-transmitter Gaussian MAC with a one-bit ADC front end at the receiver.

To the best of our knowledge, the existing literature on communications with low-resolution ADCs
focus exclusively on point-to-point systems. Our goal in this paper is to understand the impact of low-
resolution ADCs on the capacity region of a multiple access channel (MAC). In particular, we consider
a two-transmitter Gaussian MAC with a one-bit quantizer at the receiver. The inputs to the channel are
subject to average power constraints. We show that any point on the boundary of the capacity region is
achieved by discrete input distributions. Based on the slope of the tangent line to the capacity region at a
boundary point, we propose upper bounds on the cardinality of the support of these distributions. Finally,
based on numerical analysis for the sum capacity, it is observed that we cannot obtain a sum rate higher
than that is achieved by time division with power control.

The paper is organized as follows. Section II introduces the system model. In Section III, the capacity
region of a general two-transmitter memoryless MAC under input average power constraints is investigated.
The main result of the paper is presented in Section III, and a detailed proof is given in Section IV. The proof
has two parts: 1) it is shown that the support of the optimal distributions are bounded by contradiction , 2)
we make use of this boundedness to prove the finiteness of the optimal support by using Dubins’ theorem
[9]. Section V analyzes the sum capacity, and finally, Section VI concludes the paper.

Notations. Random variables are denoted by capital letters, while their realizations with lower case
letters. FX(x) denotes the cumulative distribution function (CDF) of random variable X . The conditional
probability mass function (pmf) pY |X1,X2(y|x1, x2) will be written as p(y|x1, x2). For integers m ≤ n, we
have [m : n] = {m,m + 1, . . . , n}. For 0 ≤ t ≤ 1, Hb(t) , −t log2 t − (1 − t) log2(1 − t) denotes the
binary entropy function. The unit-step function is denoted by s(·).

II. SYSTEM MODEL AND PRELIMINARIES

We consider a two-transmitter memoryless Gaussian MAC (as shown in Figure 1) with a one-bit quantizer
Γ at the receiver front end. Transmitter j = 1, 2 encodes its message Wj into a codeword Xn

j and transmits
it over the shared channel. The signal received by the decoder is given by

Y = Γ(X1,i +X2,i + Zi), i ∈ [1 : n],

where {Zi}ni=1 is an independent and identically distributed (i.i.d.) Gaussian noise process, also independent
of the channel inputs Xn

1 and Xn
2 with Zi ∼ N (0, 1), i ∈ [1 : n]. Γ represents the one-bit ADC operation

given by

Γ(x) =

{
1 x ≥ 0
0 x < 0

.

This channel can be modelled by the triplet (X1 ×X2, p(y|x1, x2),Y), where X1,X2 (= R) and Y (=
{0, 1}), respectively, are the alphabets of the inputs and the output. The conditional pmf of the channel
output Y conditioned on the channel inputs X1 and X2 (i.e. p(y|x1, x2)) is characterized by

p(0|x1, x2) = 1− p(1|x1, x2) = Q(x1 + x2), (1)

where Q(x) , 1√
2π

∫ +∞
x

e−
t2

2 dt.



We consider a two-transmitter stationary and memoryless MAC model (X1 ×X2, p(y|x1, x2),Y), where
X1 = X2 = R, Y = {0, 1}, p(y|x1, x2) is given in (1).

A (2nR1 , 2nR2 , n) code for this channel consists of (as in [10]):
• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],
• two encoders, where encoder j = 1, 2 assigns a codeword xnj (wj) to each message wj ∈ [1 : 2nRj ],

and
• a decoder that assigns estimates (ŵ1, ŵ2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ] or an error message to each received

sequence yn.
The stationary property means that the channel does not change over time, while the memoryless property
indicates that p(yi|xi1, xi2, yi−1, w1, w2) = p(yi|x1,i, x2,i) for any message pair (w1, w2).

We assume that the message pair (W1,W2) is uniformly distributed over [1 : 2nR1 ] × [1 : 2nR2 ]. The
average probability of error is defined as

P (n)
e , Pr

{
(Ŵ1, Ŵ2) 6= (W1,W2)

}
. (2)

Average power constraints are imposed on the channel inputs as

1

n

n∑
i=1

x2j,i(wj) ≤ Pj , ∀wj ∈ [1 : 2nRj ], j ∈ {1, 2}, (3)

where xj,i(wj) denotes the ith element of the codeword xnj (wj).
A rate pair (R1, R2) is said to be achievable for this channel if there exists a sequence of (2nR1 , 2nR2 , n)

codes satisfying the average power constraints (3),such that limn→∞ P
(n)
e = 0. The capacity region

C (P1, P2) of this channel is the closure of the set of achievable rate pairs (R1, R2).

III. MAIN RESULTS

Proposition 1. The capacity region C (P1, P2) of a two-transmitter stationary and memoryless MAC with
average power constraints P1 and P2 is the set of non-negative rate pairs (R1, R2) that satisfy

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U), (4)

for some FU(u)FX1|U(x1|u)FX2|U(x2|u), such that E[X2
j ] ≤ Pj, j = 1, 2. Also, it is sufficient to consider

|U| ≤ 5.

Proof of Proposition 1. The proof is provided in Appendix A.

The main result of this paper is provided in the following theorem. It bounds the cardinality of the
support set of the capacity achieving distributions.

Theorem 1. Let J be an arbitrary point on the boundary of the capacity region C (P1, P2) of the memoryless
MAC with a one-bit ADC front end (as shown in Figure 1). J is achieved by a distribution in the form of
F J
U (u)F J

X1|U(x1|u)F J
X2|U(x2|u). Also, let lJ be the slope of the line tangent to the capacity region at this

point. For any u ∈ U , the conditional input distributions F J
X1|U(x1|u) and F J

X2|U(x2|u) have at most n1

and n2 points of increase1, respectively, where

(n1, n2) =

 (3, 5) lJ < −1
(3, 3) lJ = −1
(5, 3) lJ > −1

. (5)

1A point Z is said to be a point of increase of a distribution if for any open set Ω containing Z, we have Pr{Ω} > 0.



Furthermore, this result remains unchanged if the one-bit ADC has a non-zero threshold.

Proof of Theorem 1. The proof is provided in Section IV.

Proposition 1 and Theorem 1 establish upper bounds on the number of mass points of the distributions
that achieve a boundary point. The significance of this result is that once it is known that the optimal
inputs are discrete with at most certain number of mass points, the capacity region along with the optimal
distributions can be obtained via computer programs.

IV. PROOF OF THEOREM 1
In order to show that the boundary points of the capacity region are achieved, it is sufficient to show

that the capacity region is a closed set, i.e., it includes all of its limit points.
Let U be a set with |U| ≤ 5, and Ω be defined as

Ω ,
{
FU,X1,X2

∣∣ U ∈ U , X1 − U −X2, E[X2
j ] ≤ Pj, j = 1, 2

}
, (6)

which is the set of all CDFs on the triplet (U,X1, X2), where U is drawn from U , and the Markov chain
X1 − U −X2 and the corresponding average power constraints hold.

In Appendix B, it is proved that Ω is a compact set. Since a continuous mapping preserves compactness,
the capacity region is compact. Since the capacity region is a subset of R2, it is closed and bounded2.
Therefore, any point P on the boundary of the capacity region is achieved by a distribution denoted by
F J
U (u)F J

X1|U(x1|u)F J
X2|U(x2|u).

Since the capacity region is a convex space, it can be characterized by its supporting hyperplanes. In
other words, any point on the boundary of the capacity region, denoted by (Rb

1, R
b
2), can be written as

(Rb
1, R

b
2) = arg max

(R1,R2)∈C (P1,P2)
R1 + λR2,

for some λ ∈ (0,∞). Here, we have excluded the cases λ = 0 and λ = ∞, where the channel is not
a two-transmitter MAC any more, and boils down to a point-to-point channel, whose capacity is already
known.

Any rate pair (R1, R2) ∈ C (P1, P2) must lie within a pentagon defined by (4) for some FUFX1|UFX2|U
that satisfies the power constraints. Therefore, due to the structure of the pentagon, the problem of finding
the boundary points is equivalent to the following maximization problem.

max
(R1,R2)∈C (P1,P2)

R1 + λR2 =

{
max I(X1;Y |X2, U) + λI(X2;Y |U) 0 < λ ≤ 1
max I(X2;Y |X1, U) + λI(X1;Y |U) λ > 1

, (7)

where on the right hand side (RHS) of (7), the maximizations are over all FUFX1|UFX2|U that satisfy the
power constraints. It is obvious that when λ = 1, the two lines in (7) are the same, which results in the
sum capacity.

For any product of distributions FX1FX2 and the channel in (1), let Iλ be defined as

Iλ(FX1FX2) ,

{
I(X1;Y |X2) + λI(X2;Y ) 0 < λ ≤ 1
I(X2;Y |X1) + λI(X1;Y ) λ > 1

. (8)

With this definition, (7) can be rewritten as

max
(R1,R2)∈C (P1,P2)

R1 + λR2 = max
5∑
i=1

pU(ui)Iλ(FX1|U(x1|ui)FX2|U(x2|ui)),

2Note that a subset of Rk is compact if and only if it is closed and bounded [11].



where the second maximization is over distributions of the form pU(u)FX1|U(x1|u)FX2|U(x2|u), such that

5∑
i=1

pU(ui)E[X2
j |U = ui] ≤ Pj, j = 1, 2.

Proposition 2. For a given FX1 and any λ > 0, Iλ(FX1FX2) is a concave, continuous and weakly
differentiable function of FX2 . In the statement of this Proposition, FX1 and FX2 could be interchanged.

Proof of Proposition 2. The proof is provided in Appendix C.

Proposition 3. Let P ′1, P
′
2 be two arbitrary non-negative real numbers. For the following problem

max
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

Iλ(FX1FX2), (9)

the optimal inputs F ∗X1
and F ∗X2

, which are not unique in general, have the following properties,
(i) The support sets of F ∗X1

and F ∗X2
are bounded subsets of R.

(ii) F ∗X1
and F ∗X2

are discrete distributions that have at most n1 and n2 points of increase, respectively,
where

(n1, n2) =

 (5, 3) 0 < λ < 1
(3, 3) λ = 1
(3, 5) λ > 1

.

Proof of Proposition 3. We start with the proof of the first claim. Assume that 0 < λ ≤ 1, and FX2 is
given. Consider the following optimization problem:

I∗FX2
, sup

FX1
:

E[X2
1 ]≤P ′1

Iλ(FX1FX2). (10)

Note that I∗FX2
< +∞, since for any λ > 0, from (8),

Iλ ≤ (λ+ 1)H(Y ) ≤ (1 + λ) < +∞.

From Proposition 2, Iλ is a continuous, concave function of FX1 . Also, the set of all CDFs with bounded
second moment (here, P ′1) is convex and compact. The compactness follows from [12, Appendix I],
where the only difference is in using Chebyshev’s inequality instead of Markov inequality. Therefore, the
supremum in (10) is achieved by a distribution F ∗X1

. Since for any FX1(x) = s(x−x0) with |x0|2 < P ′1, we
have E[X2

1 ] < P ′1, the Lagrangian theorem and the Karush-Kuhn-Tucker conditions state that there exists
a θ1 ≥ 0 such that

I∗FX2
= sup

FX1

{
Iλ(FX1FX2)− θ1

(∫
x2dFX1(x)− P ′1

)}
. (11)

Furthermore, the supremum in (11) is achieved by F ∗X1
, and

θ1

(∫
x2dF ∗X1

(x)− P ′1
)

= 0. (12)

Lemma 1. The Lagrangian multiplier θ1 is non-zero. From (12), this is equivalent to having E[X2
1 ] = P ′1,

i.e., the first user transmits with its maximum allowable power3.

3Note that this is for λ ≤ 1, as used in Appendix D



Proof of Lemma 1. In what follows, we prove that a zero Lagrangian multiplier is not possible. Having a
zero Lagrangian multiplier means the power constraint is inactive. In other words, if θ1 = 0, (10) and (11)
imply that

sup
FX1

E[X2
1 ]≤P ′1

Iλ(FX1FX2) = sup
FX1

Iλ(FX1FX2). (13)

We prove that (13) does not hold by showing that its left hand side (LHS) is strictly less than 1, while its
RHS equals 1. The details are provided in Appendix D.

Iλ(FX1FX2) (0 < λ ≤ 1) can be written as

Iλ(FX1FX2) =

∫ +∞

−∞

∫ +∞

−∞

1∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

[p(y;FX1FX2)]
λ[p(y;FX1|x2)]1−λ

dFX1(x1)dFX2(x2)

=

∫ +∞

−∞
ĩλ(x1;FX1|FX2)dFX1(x1) (14)

=

∫ +∞

−∞
iλ(x2;FX2|FX1)dFX2(x2), (15)

where we have defined

ĩλ(x1;FX1|FX2)1 ,
∫ +∞

−∞

(
D (p(y|x1, x2)||p(y;FX1FX2)) + (1− λ)

1∑
y=0

p(y|x1, x2) log
p(y;FX1FX2)

p(y;FX1|x2)

)
dFX2(x2),

(16)
and

iλ(x2;FX2|FX1) ,
∫ +∞

−∞
D (p(y|x1, x2)||p(y;FX1FX2)) dFX1(x1)−(1−λ)D (p(y;FX1|x2)||p(y;FX1FX2)) .

(17)
p(y;FX1FX2) is nothing but the pmf of Y with the emphasis that it has been induced by FX1 and FX2 .
Likewise, p(y;FX1|x2) is the conditional pmf p(y|x2) when X1 is drawn according to FX1 . From (14),
ĩλ(x1;FX1 |FX2) can be considered as the density of Iλ over FX1 when FX2 is given. iλ(x2;FX2|FX1) can
be interpreted in a similar way.

Note that (11) is an unconstrained optimization problem over the set of all CDFs. Since
∫
x2dFX1(x) is

linear and weakly differentiable in FX1 , the objective function in (11) is concave and weakly differentiable.
Hence, a necessary condition for optimality of F ∗X1

is∫
{̃iλ(x1;F ∗X1

|FX2) + θ1(P
′
1 − x21)}dFX1(x1) ≤ I∗FX2

, ∀FX1 . (18)

Furthermore, (18) can be verified to be equivalent to

ĩλ(x1;F
∗
X1
|FX2) + θ1(P

′
1 − x21) ≤ I∗FX2

, ∀x1 ∈ R, (19)

ĩλ(x1;F
∗
X1
|FX2) + θ1(P

′
1 − x21) = I∗FX2

, if x1 is a point of increase of F ∗X1
. (20)

The justifications of (18), (19) and (20) are provided in Appendix E.
In what follows, we prove that in order to satisfy (20), F ∗X1

must have a bounded support by showing
that the LHS of (20) goes to −∞ with x1. The following lemma is useful in the sequel for taking the
limit processes inside the integrals.

Lemma 2. Let X1 and X2 be two independent random variables satisfying E[X2
1 ] ≤ P ′1 and E[X2

2 ] ≤ P ′2,
respectively (P ′1, P

′
2 ∈ [0,+∞)). Considering the conditional pmf in (1), the following inequalities hold.∣∣∣∣D (p(y|x1, x2)||p(y;FX1FX2))

∣∣∣∣ ≤ 1− 2 logQ(
√
P ′1 +

√
P ′2) (21)



p(y;FX1|x2) ≥ Q
(√

P ′1 + |x2|
)

(22)∣∣∣∣∣
1∑
y=0

p(y|x1, x2) log
p(y;FX1FX2)

p(y;FX1|x2)

∣∣∣∣∣ ≤ −2 logQ
(√

P ′1 +
√
P ′2

)
− 2 logQ

(√
P ′1 + |x2|

)
(23)

Proof of Lemma 2. The proof is provided in Appendix F.

Note that

lim
x1→+∞

∫ +∞

−∞
D
(
p(y|x1, x2)||p(y;F ∗X1

FX2)
)
dFX2(x2) =

∫ +∞

−∞
lim

x1→+∞
D
(
p(y|x1, x2)||p(y;F ∗X1

FX2)
)
dFX2(x2)

(24)
= − log pY (1;F ∗X1

FX2) (25)

≤ − logQ(
√
P ′1 +

√
P ′2), (26)

where (24) is due to Lebesgue dominated convergence theorem [11] and (21), which permit the interchange
of the limit and the integral; (25) is due to the following

lim
x1→+∞

D
(
p(y|x1, x2)||p(y;F ∗X1

FX2)
)

= lim
x1→+∞

1∑
y=0

p(y|x1, x2) log
p(y|x1, x2)
p(y;F ∗X1

FX2)

= − log pY (1;F ∗X1
FX2),

since p(0|x1, x2) = Q(x1 + x2) goes to zero when x1 → +∞ and pY (y;F ∗X1
FX2) (y = 0, 1) is bounded

away from zero by (86) ; and (26) is obtained from (86) in Appendix F. Furthermore,

lim
x1→+∞

∫ +∞

−∞

1∑
y=0

p(y|x1, x2) log
p(y;F ∗X1

FX2)

p(y;F ∗X1
|x2)

dFX2(x2) =

∫ +∞

−∞
lim

x1→+∞

1∑
y=0

p(y|x1, x2) log
p(y;F ∗X1

FX2)

p(y;F ∗X1
|x2)

dFX2(x2)

(27)

= log pY (1;F ∗X1
FX2)−

∫ +∞

−∞
log p(1;F ∗X1

|x2)dFX2(x2)

< − logQ
(√

P ′1 +
√
P ′2

)
, (28)

where (27) is due to Lebesgue dominated convergence theorem along with (23) and (91) in Appendix F;
(28) is from (22) and convexity of logQ(α +

√
t) in t when α ≥ 0 (see Appendix G).

Therefore, from (26) and (28),

lim
x1→+∞

ĩλ(x1;F
∗
X1
|FX2) ≤ −(2− λ) logQ(

√
P ′1 +

√
P ′2) < +∞. (29)

Using a similar approach, we can also obtain

lim
x1→−∞

ĩλ(x1;F
∗
X1
|FX2) ≤ −(2− λ) logQ(

√
P ′1 +

√
P ′2) < +∞. (30)

From (29), (30) and the fact that θ1 > 0 (see Lemma 1), the LHS of (19) goes to −∞ when |x1| → +∞.
Since any point of increase of F ∗X1

must satisfy (19) with equality, and I∗FX2
≥ 0, it is proved that F ∗X1

has
a bounded support. Hence, from now on, we assume X1 ∈ [−A1, A2] for some A1, A2 ∈ R.4

Similarly, for a given FX1 , the optimization problem

I∗FX1
= sup

FX2
:

E[X2
2 ]≤P ′2

Iλ(FX1FX2),

4Note that A1 and A2 are determined by the choice of FX2 .



boils down to the following necessary condition

iλ(x2;F
∗
X2
|FX1) + θ2(P

′
2 − x22) ≤ I∗FX1

, ∀x2 ∈ R, (31)

iλ(x2;F
∗
X2
|FX1) + θ2(P

′
2 − x22) = I∗FX1

, if x2 is a point of increase of F ∗X2
, (32)

for the optimality of F ∗X2
. However, there are two main differences between (32) and (20). First is the

difference between iλ and ĩλ. Second is the fact that we do not claim θ2 to be nonzero, since the approach
used in Lemma 1 cannot be readily applied to θ2. Nonetheless, the boundedness of the support of F ∗X2

can
be proved by inspecting the behaviour of the LHS of (32) when |x2| → +∞.

In what follows, i.e., from (33) to (38), we prove that the support of F ∗X2
is bounded by showing that (32)

does not hold when |x2| is above a certain threshold. The first term on the LHS of (32) is iλ(x2;F ∗X2
|FX1).

From (17) and (21), it can be easily verified that

lim
x2→+∞

iλ(x2;F
∗
X2
|FX1) = −λ log pY (1;FX1F

∗
X2

) ≤ −λ logQ(
√
P ′1 +

√
P ′2),

lim
x2→−∞

iλ(x2;F
∗
X2
|FX1) = −λ log pY (0;FX1F

∗
X2

) ≤ −λ logQ(
√
P ′1 +

√
P ′2) (33)

From (33), if θ2 > 0, the LHS of (32) goes to −∞ with |x2|, which proves that X∗2 is bounded.
For the possible case of θ2 = 0, in order to show that (32) does not hold when |x2| is above a certain

threshold, we rely on the boundedness of X1, i.e., X1 ∈ [−A1, A2]. Then, we prove that iλ approaches
its limit in (33) from below. In other words, there is a real number K such that iλ(x2;F ∗X2

|FX1) <
−λ log pY (1;FX1F

∗
X2

) when x2 > K, and iλ(x2;F ∗X2
|FX1) < −λ log pY (0;FX1F

∗
X2

) when x2 < −K. This
establishes the boundedness of X∗2 . In what follows, we only show the former, i.e., when x2 → +∞. The
latter, i.e., x2 → −∞, follows similarly, and it is omitted for the sake of brevity.

By rewriting iλ, we have

iλ(x2;F
∗
X2
|FX1) = −λp(1;FX1|x2) log pY (1;FX1F

∗
X2

)

−
∫ A2

−A1

Hb(Q(x1 + x2))dFX1(x1) + (1− λ)H(Y |X2 = x2)︸ ︷︷ ︸
Hb(

∫
Q(x1+x2)dFX1

(x1))

− λ p(0;FX1|x2)︸ ︷︷ ︸∫
Q(x1+x2)dFX1

(x1)

log pY (0;FX1F
∗
X2

). (34)

It is obvious that the first term in the RHS of (34) approaches −λ log pY (1;FX1F
∗
X2

) from below when
x2 → +∞, since p(1;FX1|x2) ≤ 1. It is also obvious that the remaining terms go to zero when x2 → +∞.
Hence, it is sufficient to show that they approach zero from below, which is proved by using the following
lemma.

Lemma 3. Let X1 be distributed on [−A1, A2] according to FX1(x1). We have

lim
x2→+∞

∫ A2

−A1
Hb(Q(x1 + x2))dFX1(x1)

Hb

(∫ A2

−A1
Q(x1 + x2)dFX1(x1)

) = 1. (35)

Proof of Lemma 3. The proof is provided in Appendix H.

From (35), we can write∫ A2

−A1

Hb(Q(x1 + x2))dFX1(x1) = γ(x2)Hb

(∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
, (36)



where γ(x2) ≤ 1 (due to concavity of Hb(·)), and γ(x2) → 1 when x2 → +∞ (due to (35)). Also, from
the fact that limx→0

Hb(x)
cx

= +∞ (c > 0), we have

Hb

(∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
= −η(x2) log pY (0;FX1F

∗
X2

)

∫ A2

−A1

Q(x1 + x2)dFX1(x1), (37)

where η(x2) > 0 and η(x2) → +∞ when x2 → +∞. From (36) and (37), the second and the third line
of (34) become(

1− γ(x2) +
λ

η(x2)
− λ
)(
−η(x2) log pY (0;FX1F

∗
X2

)

∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
︸ ︷︷ ︸

≥0

. (38)

Since γ(x2) → 1 and η(x2) → +∞ as x2 → +∞, there exists a real number K such that 1 − γ(x2) +
λ

η(x2)
− λ < 0 when x2 > K. Therefore, the second and the third line of (34) approach zero from below,

which proves that the support of X∗2 is bounded away from +∞. As mentioned before, a similar argument
holds when x2 → −∞. This proves that X∗2 has a bounded support.

Remark 1. We remark here that the order of showing the boundedness of the supports is important. First,
for a given FX2 (not necessarily bounded), it is proved that F ∗X1

is bounded. Then, for a given bounded
FX1 , it is shown that F ∗X2

is also bounded. Hence, the boundedness of the supports of the optimal input
distributions is proved by contradiction. The order is reversed when λ > 1, and it follows the same steps
as in the case of λ ≤ 1. Therefore, it is omitted.

We next prove the second claim in Proposition 3. We assume that 0 < λ < 1, and a bounded FX1 is
given. We already know that for a given bounded FX1 , F ∗X2

has a bounded support denoted by [−B1, B2].
Therefore,

I∗FX1
= sup

FX2
:

E[X2
2 ]≤P ′2

Iλ(FX1FX2)

I∗FX1
= sup

FX2
∈S2:

E[X2
2 ]≤P ′2

Iλ(FX1FX2), (39)

where S2 denotes the set of all probability distributions on the Borel sets of [−B1, B2]. Let p∗0 =
pY (0;FX1F

∗
X2

) denote the probability of the event Y = 0, induced by F ∗X2
and the given FX1 . Also,

let P ∗2 denote the second moment of X2 under F ∗X2
. The set

F2 =

{
FX2 ∈ S2|

∫ B2

−B1

p(0|x2)dFX2(x2) = p∗0,

∫ B2

−B1

x22dFX2(x2) = P ∗2

}
(40)

is the intersection of S2 with two hyperplanes.5 We can write

I∗FX1
= sup

FX2
∈F2

Iλ(FX1FX2). (41)

Note that having FX2 ∈ F2, the objective function in (41) becomes

λH(Y )︸ ︷︷ ︸
constant

+ (1− λ)H(Y |X2)−H(Y |X1, X2)︸ ︷︷ ︸
linear in FX2

. (42)

5Note that S2 is convex and compact.



Since the linear part is continuous and F2 is compact6, the objective function in (41) attains its maximum
at an extreme point of F2, which, by Dubins’ theorem, is a convex combination of at most three extreme
points of S2. Since the extreme points of S2 are the CDFs having only one point of increase in [−B1, B2],
we conclude that given any bounded FX1 , F ∗X2

has at most three mass points.
Now, assume that an arbitrary FX2 is given with at most three mass points denoted by {x2,i}3i=1. It is

already known that the support of F ∗X1
is bounded, which is denoted by [−A1, A2]. Let S1 denote the set

of all probability distributions on the Borel sets of [−A1, A2]. The set

F1 =

{
FX1 ∈ S1

∣∣∣∣ ∫ A2

−A1

p(0|x1, x2,j)dFX1(x1) = p(0;F ∗X1
|x2,j), j ∈ [1 : 3],

∫ A2

−A1

x21dFX1(x1) = P ′1

}
,

(43)

is the intersection of S1 with four hyperplanes. Note that here, since we know θ1 6= 0, the optimal input
attains its maximum power of P ′1. In a similar way,

I∗FX2
= sup

FX1
∈F1

{Iλ(FX1FX2)} , (44)

and having FX1 ∈ F1, the objective function in (44) becomes

Iλ = λH(Y ) + (1− λ)
3∑
i=1

pX2(x2,i)H(Y |X2 = x2,i)︸ ︷︷ ︸
constant

−H(Y |X1, X2)︸ ︷︷ ︸
linear in FX1

(45)

Therefore, given any FX2 with at most three points of increase, F ∗X1
has at most five mass points.

When λ = 1, the second term on the RHS of (45) disappears, which means that F1 could be replaced
by {

FX1 ∈ S1|
∫ A2

−A1

p(0|x1)dFX1(x1) = p̃∗0,

∫ A2

−A1

x21dFX1(x1) = P ′1

}
,

where p̃∗0 = pY (0;F ∗X1
FX2) is the probability of the event Y = 0, which is induced by F ∗X1

and the given
FX2 . Since the number of intersecting hyperplanes has been reduced to two, it is concluded that F ∗X1

has
at most three points of increase.

Remark 2. Note that, the order of showing the discreteness of the support sets is also important. First, for
a given bounded FX1 (not necessarily discrete), it is proved that F ∗X2

is discrete with at most three mass
points. Then, for a given discrete FX2 with at most three mass points, it is shown that F ∗X1

is also discrete
with at most five mass points when λ < 1, and at most three mass points when λ = 1. When λ > 1, the
order is reversed and it follows the same steps as in the case of λ < 1. Therefore, it is omitted.

Remark 3. If X1,X2 are assumed finite initially, similar results can be obtained by using the iterative
optimization in the previous proof and the approach in [13, Chapter 4, Corollary 3].

6The continuity of the linear part follows similarly to the continuity arguments in Appendix C. Note that this compactness is due to the
closedness of the intersecting hyperplanes in F2, since a closed subset of a compact set is compact [11]. The hyperplanes are closed due to
continuity of x22 and p(0|x2) (see (68)).



V. SUM RATE ANALYSIS

In this section, we propose a lower bound on the sum capacity of a MAC in the presence of a one-bit
ADC front end at the receiver, which we conjecture to be tight. The sum capacity is given by

Csum = sup I(X1, X2;Y |U), (46)

where the supremum is over FUFX1|UFX2|U (|U| ≤ 5), such that E[X2
j ] ≤ Pj, j = 1, 2. We obtain a lower

bound for the above by considering only those input distributions that are zero-mean per any realization of
the auxiliary random variable U , i.e., E[Xj|U = u] = 0,∀u ∈ U , j = 1, 2. Let P ′1 and P ′2 be two arbitrary
non-negative real numbers. We have

sup
FX1

FX2
:

E[X2
j ]≤P ′j

E[Xj ]=0, j=1,2

I(X1, X2;Y ) ≤ sup
FX̃ :

E[X̃2]≤P ′1+P ′2

I(X̃;Y ) (47)

= 1−Hb

(
Q
(√

P ′1 + P ′2

))
(48)

where in (47), X̃ , X1 + X2, pY |X̃(0|x̃) = Q(x̃); (48) follows from [4] for the point-to-point channel.
Therefore, when E[Xj|U = u] = 0,∀u ∈ U , j = 1, 2, we can write

I(X1, X2;Y |U) =
5∑
i=1

pU(ui)I(X1, X2;Y |U = ui)

≤ 1−
5∑
i=1

pU(ui)Hb

(
Q

(√
E[X2

1 |U = ui] + E[X2
2 |U = ui]

))
≤ 1−Hb

(
Q

(√
E[X2

1 ] + E[X2
2 ]

))
(49)

≤ 1−Hb

(
Q
(√

P1 + P2

))
, (50)

where (49) is due to the fact that Hb (Q(
√
x+ y)) is a convex function of (x, y), and (50) follows from

E[X2
j ] ≤ Pj, j = 1, 2.

The upper bound in (50) can be achieved by time division with power control as follows. Let U = {0, 1}
and pU(0) = 1 − pU(1) = P1

P1+P2
. Also, let FX1|U(x|1) = FX2|U(x|0) = s(x), where s(·) is the unit step

function, and

FX1|U(x|0) = FX2|U(x|1) =
1

2
s(x+

√
P1 + P2) +

1

2
s(x−

√
P1 + P2).

With this choice of FUFX1|UFX2|U , the upper bound in (50) is achieved. Therefore,

Csum ≥ 1−Hb

(
Q
(√

P1 + P2

))
. (51)

A numerical evaluation of (46) is carried out as follows7. Although E[X2
j ] is upper bounded by Pj (j = 1, 2),

the value of E[X2
j |U = u] (∀u ∈ U) has no upper bound, and could be any non-negative real number.

However, in our numerical analysis, we further restrict our attention to the case E[X2
j |U = u] ≤ 20Pj,∀u ∈

U , j = 1, 2. Obviously, as this upper bound tends to infinity, the approximation becomes more accurate8.

7The codes that are used for the numerical simulations are available at
https://www.dropbox.com/sh/ndxkjt6h5a0yktu/AAAmfHkuPxe8rMNV1KzFVRgNa?dl=0.

8This further bounding of the conditional second moments is justified by the fact that the sum capacity is not greater than one, which is due
to the one-bit quantization at the receiver. As a result, I(X1, X2;Y |U = u) increases at most sublinearly with E[X2

j |U = u], j = 1, 2, while
pU (u) needs to decrease at least linearly to satisfy the average power constraints. Hence, the product pU (u)I(X1, X2;Y |U = u) decreases
with E[X2

j |U = u] when E[X2
j |U = u] is above a threshold.



Each of the intervals [0, 20P1] and [0, 20P2] are divided into 201 points uniformly, which results in the
discrete intervals P1

10
[0 : 200] and P2

10
[0 : 200], respectively. Afterwards, for any pair (α, β) ∈ P1

10
[0 :

200]× P2

10
[0 : 200], the following is carried out for input distributions with at most 3 mass points.

max
FX1

FX2
:

E[X2
1 ]≤α,E[X2

2 ]≤β

I(X1, X2;Y ) (52)

The results are stored in a 201 × 201 matrix accordingly. In the above optimization, the Matlab function
fmincon is used with three different initial values, and the maximum of these three experiments is chosen.
Then, the problem boils down to finding proper gains, i.e., the mass probabilities of U , that maximize
I(X1, X2;Y |U), and satisfy the average power constraints E[X2

j ] ≤ Pj . This is done via a linear program,
which can be efficiently solved by the linprog function in Matlab. Several cases were considered, such as
(P1, P2) = (1, 1), (P1, P2) = (1, 2), (P1, P2) = (3, 1), etc. In all these cases, the numerical evaluation of
(46) leads to the same value as the lower bound in (51). Since the problem is not convex, it is not known
whether the numerical results are the global optimum solutions; hence, we leave it as a conjecture that the
sum capacity can be achieved by time division with power control.

VI. CONCLUSIONS

We have studied the capacity region of a two-transmitter Gaussian MAC under average input power
constraints and one-bit ADC front end at the receiver. We have derived an upper bound on the cardinality
of this auxiliary variable, and proved that the distributions that achieve the boundary points of the capacity
region are finite and discrete. Finally, a lower bound is proposed on the sum capacity of this MAC that is
achieved by time division with power control. Through numerical analysis, this lower bound is shown to
be tight.
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A.
The capacity region of the discrete memoryless (DM) MAC with input cost constraints has been addressed

in Exercise 4.8 of [10]. If the input alphabets are not discrete, the capacity region is still the same because:
1) the converse remains the same if the inputs are from a continuous alphabet; 2) the region is achievable
by coded time sharing and the discretization procedure (see Remark 3.8 in [10]). Therefore, it is sufficient
to show the cardinality bound |U| ≤ 5.

Let P be the set of all product distributions (i.e., of the form FX1(x1)FX2(x2)) on R2. Let g : P → R5

be a vector-valued mapping defined element-wise as

g1(FX1|U(·|u)FX2|U(·|u)) = I(X1;Y |X2, U = u),

g2(FX1|U(·|u)FX2|U(·|u)) = I(X2;Y |X1, U = u),

g3(FX1|U(·|u)FX2|U(·|u)) = I(X1, X2;Y |U = u),

g4(FX1|U(·|u)FX2|U(·|u)) = E[X2
1 |U = u],

g5(FX1|U(·|u)FX2|U(·|u)) = E[X2
2 |U = u]. (53)

Let G ⊂ R5 be the image of P under the mapping g (i.e., G = g(P)). Given an arbitrary (U,X1, X2) ∼
FUFX1|UFX2|U , we obtain the vector r as

r1 = I(X1;Y |X2, U) =

∫
U
I(X1;Y |X2, U = u)dFU(u),



r2 = I(X2;Y |X1, U) =

∫
U
I(X2;Y |X1, U = u)dFU(u),

r3 = I(X1, X2;Y |U) =

∫
U
I(X1, X2;Y |U = u)dFU(u),

r4 = E[X2
1 ] =

∫
U
E[X2

1 |U = u]dFU(u),

r5 = E[X2
2 ] =

∫
U
E[X2

2 |U = u]dFU(u).

Therefore, r is in the convex hull of G ⊂ R5. By Carathéodory’s theorem [9], r can be written as a convex
combination of 6 (= 5 + 1) or fewer points in G , which states that it is sufficient to consider |U| ≤ 6.
Since P is a connected set9 and the mapping g is continuous10, G is a connected subset of R5. Therefore,
connectedness of G refines the cardinality of U to |U| ≤ 5.

It is also important to note that for the boundary points of C (P1, P2) that are not sum-rate opti-
mal, it is sufficient to have |U| ≤ 4. The proof is as follows. Any point on the boundary of the ca-
pacity region that does not maximize R1 + R2, is either of the form (I(X1;Y |X2, U), I(X2;Y |U)) or
(I(X1;Y |U), I(X2;Y |X1, U)) for some FUFX1|UFX2|U that satisfies E[X2

j ] ≤ Pj, j = 1, 2. In other words,
it is one of the corner points of the corresponding pentagon in (4). As in the proof of Proposition 1, define
the mapping g : P → R4, where g1 and g2 are the coordinates of this boundary point conditioned on
U = u, and g3, g4 are the same as g4 and g5 in (53), respectively. The sufficiency of |U| ≤ 4 in this case
follows similarly.

B.
Since |U| ≤ 5, we assume U = {0, 1, 2, 3, 4} without loss of generality, since what matters in the

evaluation of the capacity region is the mass probability of the auxiliary random variable U , not its actual
values.

In order to show the compactness of Ω, we adopt a general form of the approach in [12].

First, we show that Ω is tight11. Choose Tj , j = 1, 2, such that Tj >
√

2Pj
ε

. Then, from Chebyshev’s
inequality,

Pr
{
|Xj| > Tj

}
≤ Pj
T 2
j

<
ε

2
, j = 1, 2. (54)

Let Kε = [0, 4]× [−T1, T1]× [−T2, T2] ⊂ R3. It is obvious that Kε is a closed and bounded subset of R3,
and therefore, compact. With this choice of Kε, we have

Pr
{

(U,X1, X2) ∈ R3\Kε

}
≤ Pr{U /∈ [0, 4]}+ Pr{X1 /∈ [−T1, T1]}+ Pr{X2 /∈ [−T2, T2]}

< 0 +
ε

2
+
ε

2
= ε, (55)

where (55) is due to (54). Hence, Ω is tight.
From Prokhorov’s theorem [14, p.318], a set of probability distributions is tight if and only if it is

relatively sequentially compact12. This means that for every sequence of CDFs {Fn} in Ω, there exists a

9P is the product of two connected sets, therefore, it is connected. Each of the sets in this product is connected because of being a convex
vector space.

10This is a direct result of the continuity of the channel transition probability.
11A set of probability distributions Θ defined on Rk, i.e. the set of CDFs FX1,X2,...,Xk , is said to be tight, if for every ε > 0, there is a

compact set Kε ⊂ Rk such that [14]

Pr
{

(X1, X2, . . . , Xk) ∈ Rk\Kε

}
< ε, ∀FX1,X2,...,Xk ∈ Θ.

12A subset of topological space is relatively compact if its closure is compact.



subsequence {Fnk} that is weakly convergent13 to a CDF F0, which is not necessarily in Ω. If we can
show that this F0 is also an element of Ω, then the proof is complete, since we have shown that Ω is
sequentially compact, and therefore, compact14.

Assume a sequence of distributions {Fn(·, ·, ·)} in Ω that converges weakly to F0(·, ·, ·). In order to
show that this limiting distribution is also in Ω, we need to show that both the average power constraints
and the Markov chain (X1 − U − X2) are preserved under F0. The preservation of the second moment
follows similarly to the argument in [12, Appendix I]. In other words, since x2 is continuous and bounded
below, from [15, Theorem 4.4.4]∫

x2jd
3F0(u, x1, x2) ≤ lim inf

n→∞

∫
x2jd

3Fn(u, x1, x2)

≤ Pj, j = 1, 2, (57)

Therefore, the second moments are preserved under the limiting distribution F0.
For the preservation of the Markov chain X1 − U −X2, we need the following proposition.

Proposition 4. Assume a sequence of distributions {Fn(·, ·)} over the pair of random variables (X, Y )
that converges weakly to F0(·, ·). Also, assume that Y has a finite support, i.e., Y = {1, 2, . . . , |Y|}. Then,
the sequence of conditional distributions (conditioned on Y ) converges weakly to the limiting conditional
distribution (conditioned on Y ), i.e.,

Fn(·|y)
w→ F0(·|y), ∀y ∈ Y , p0(y) > 0. (58)

Proof of Proposition A1. The proof is by contradiction. If (58) is not true, then there exists y′ ∈ Y , such
that p0(y′) > 0 and Fn(·|y′)��w→F0(·|y′). This means, from the definition of weak convergence, that there
exists a bounded continuous function of x, denoted by gy′(x), such that∫

gy′(x)dFn(x|y′)��→
∫
gy′(x)dF0(x|y′). (59)

Let f(x, y) be any bounded continuous function that satisfies

f(x, y) =

{
0 y ∈ Y , y 6= y′

gy′(x) y = y′
. (60)

With this choice of f(x, y), we have∫
f(x, y)d2Fn(x, y)��→

∫
f(x, y)d2F0(x, y), (61)

which violates the assumption of the weak convergence of Fn(·, ·) to F0(·, ·). Therefore, (58) holds.

Since {Fn(·, ·, ·)} in Ω converges weakly to F0(·, ·, ·) and U is finite, from Proposition A1, we have

Fn(·, ·|u)
w→ F0(·, ·|u), ∀u ∈ U , (62)

where it is obvious that the arguments are x1 and x2. Since Fn ∈ Ω, we have Fn(x1, x2|u) = Fn(x1|u)Fn(x2|u) ∀u ∈
U . Also, since the convergence of the joint distribution implies the convergence of the marginals, we have
[16], [17, Theorem 2.7],

F0(x1, x2|u) = F0(x1|u)F0(x2|u) ∀u ∈ U , (63)

13The weak convergence of {Fn} to F (also shown as Fn(x)
w→ F (x)) is equivalent to

lim
n→∞

∫
R
ψ(x)dFn(x) =

∫
R
ψ(x)dF (x), (56)

for all continuous and bounded functions ψ(·) on R. Note that Fn(x)
w→ F (x) if and only if dL(Fn, F )→ 0.

14Compactness and sequentially compactness are equivalent in metric spaces. Note that Ω is a metric space with Lévy distance.



which states that under the limiting distribution F0, the Markov chain X1 − U −X2 is preserved.15 This
completes the proof of the compactness of Ω.

C.
A. Concavity

When 0 < λ ≤ 1, we have

Iλ(FX1FX2) = λH(Y ) + (1− λ)H(Y |X2)−H(Y |X1, X2). (66)

For a given FX1 , H(Y ) is a concave function of FX2 , while H(Y |X2) and H(Y |X1, X2) are linear in FX2 .
Therefore, Iλ is a concave function of FX2 . For a given FX2 , H(Y ) and H(Y |X2) are concave functions
of FX1 , while H(Y |X1, X2) is linear in FX1 . Since (1 − λ) ≥ 0, Iλ is a concave function of FX1 . The
same reasoning applies to the case λ > 1.

B. Continuity
When λ ≤ 1, the continuity of the three terms on the RHS of (66) is investigated. Let {FX2,n} be a

sequence of distributions which is weakly convergent to FX2 . For a given FX1 , we have

lim
x2→x02

p(y;FX1|x2) = lim
x2→x02

∫
Q(x1 + x2)dFX1(x1)

=

∫
lim
x2→x02

Q(x1 + x2)dFX1(x1) (67)

= p(y;FX1|x02), (68)

where (67) is due to the fact that the Q function can be dominated by 1, which is an absolutely integrable
function over FX1 . Therefore, p(y;FX1|x2) is continuous in x2, and combined with the weak convergence
of {FX2,n}, we can write

lim
n→∞

p(y;FX1FX2,n) = lim
n→∞

∫
p(y;FX1|x2)dFX2,n(x2)

=

∫
p(y;FX1|x2)dFX2(x2)

= p(y;FX1FX2).

This allows us to write

lim
n→∞

−
1∑
y=0

p(y;FX1FX2,n) log p(y;FX1FX2,n) = −
1∑
y=0

p(y;FX1FX2) log p(y;FX1FX2),

which proves the continuity of H(Y ) in FX2 . H(Y |X2 = x2) is a bounded (∈ [0, 1]) continuous function of
x2, since it is a continuous function of p(y;FX1|x2), and the latter is continuous in x2 (see (68)). Therefore,

lim
n→∞

∫
H(Y |X2 = x2)dFX2,n(x2) =

∫
H(Y |X2 = x2)dFX2(x2),

15Alternatively, this could be proved by the lower-semicontinuity of the mutual information as follows.

IF0(X1;X2|U = u) ≤ lim inf
n→∞

IFn(X1;X2|U = u) (64)

= 0, ∀u ∈ U , (65)

where IF denotes the mutual information under distribution F . The last equality is from the conditional independence of X1 and X2 given
U = u under Fn. Therefore, IF0(X1;X2|U = u) = 0, ∀u ∈ U , which is equivalent to (63).



which proves the continuity of H(Y |X2) in FX2 . In a similar way, it can be verified that
∫
H(Y |X1 =

x1, X2 = x2)dFX1(x1) is a bounded and continuous function of x2 which guarantees the continuity of
H(Y |X1, X2) in FX2 , since

H(Y |X1, X2) =

∫ (∫
H(Y |X1 = x1, X2 = x2)dFX1(x1)

)
dFX2(x2) (69)

Therefore, for a given FX1 , Iλ is a continuous function of FX2 . Exchanging the roles of FX1 and FX2 and
also the case λ > 1 can be addressed similarly, and are omitted for the sake of brevity.

C. Weak Differentiability
For a given FX1 , the weak derivative of Iλ at F 0

X2
is given by

I ′λ(FX1FX2)|F 0
X2

= lim
β→0+

Iλ(FX1((1− β)F 0
X2

+ βFX2))− Iλ(FX1F
0
X2

)

β
, (70)

if the limit exists. It can be verified that

I ′λ(FX1FX2)|F 0
X2

= lim
β→0+

∫
iλ(x2; (1− β)F 0

X2
+ βFX2|FX1)d((1− β)F 0

X2
(x2) + βFX2(x2))−

∫
iλ(x2;F

0
X2
|FX1)dF

0
X2

(x2)

β

=

∫
iλ(x2;F

0
X2
|FX1)dFX2(x2)−

∫
iλ(x2;F

0
X2
|FX1)dF

0
X2

(x2)

=

∫
iλ(x2;F

0
X2
|FX1)dFX2(x2)− Iλ(FX1F

0
X2

),

where iλ has been defined in (17). In a similar way, for a given FX2 , the weak derivative of Iλ at F 0
X1

is

I ′λ(FX1FX2)|F 0
X1

=

∫
ĩλ(x1;F

0
X1
|FX2)dFX1(x1)− Iλ(F 0

X1
FX2), (71)

where ĩλ has been defined in (16). The case λ > 1 can be addressed similarly.

D.
We have

sup
FX1

:

E[X2
1 ]≤P ′1

Iλ(FX1FX2) ≤ sup
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

Iλ(FX1FX2)

≤ sup
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

I(X1, X2;Y ) (72)

≤ sup
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

H(Y )− inf
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

H(Y |X1, X2)

= 1− inf
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

∫ ∫
Hb (Q(x1 + x2)) dFX1(x1)dFX2(x2)

= 1− inf
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

∫ ∫
Hb

(
Q

(√
x21 +

√
x22

))
dFX1(x1)dFX2(x2) (73)



≤ 1− inf
FX1

FX2
:

E[X2
j ]≤P ′j , j=1,2

∫ ∫
Q

(√
x21 +

√
x22

)
dFX1(x1)dFX2(x2) (74)

= 1−Q
(√

P ′1 +
√
P ′2

)
(75)

< 1, (76)

where (72) is from the non-negativity of mutual information and the assumption that 0 < λ ≤ 1; (73) is
justified since the Q function is monotonically decreasing and the sign of the inputs does not affect the
average power constraints, X1 and X2 can be assumed non-negative (or alternatively non-positive) without
loss of optimality; in (74), we use the fact that Q

(√
x21 +

√
x22

)
≤ 1

2
, and for t ∈ [0, 1

2
], Hb(t) ≥ t; (75)

is based on the convexity and monotonicity of the function Q(
√
u +
√
v) in (u, v), which is shown in

Appendix G. Therefore, the LHS of (13) is strictly less than 1.
Since X2 has a finite second moment (E[X2

2 ] ≤ P ′2), from Chebyshev’s inequality, we have

P (|X2| ≥M) ≤ P ′2
M2

, ∀M > 0. (77)

Fix M > 0 and consider X1 ∼ FX1(x1) = 1
2
[s(x1 + 2M) + s(x1 − 2M)]. By this choice of FX1 , we get

Iλ(FX1FX2) = I(X1;Y |X2) + λI(X2;Y )

≥ I(X1;Y |X2) (78)

=

∫ +∞

−∞
I(X1;Y |X2 = x2)dFX2(x2)

≥
∫ +M

−M
I(X1;Y |X2 = x2)dFX2(x2)

≥ inf
FX2

∫ +M

−M
H(Y |X2 = x2)dFX2(x2)− sup

FX2

∫ +M

−M
H(Y |X1, X2 = x2)dFX2(x2)

≥
(

1− P ′2
M2

)
Hb

(
1

2
− 1

2
(Q(3M) +Q(M))

)
−Hb (Q(2M)) , (79)

where (79) is due to (77) and the fact that H(Y |X2 = x2) = Hb(
1
2
Q(2M + x2) + 1

2
Q(−2M + x2))

is minimized over [−M,M ] at x2 = M (or, alternatively at x2 = −M ), and H(Y |X1, X2 = x2) =
1
2
Hb(Q(2M + x2)) + 1

2
Hb(Q(−2M + x2)) is maximized at x2 = 0. (79) shows that Iλ (≤ 1) can become

arbitrarily close to 1 given that M is large enough. Hence, its supremum over all distributions FX1 is 1.
This means that (13) cannot hold, and θ1 6= 0.

E. JUSTIFICATION OF (18), (19) AND (20)
Let X be a vector space, and Z be a real-valued function defined on a convex domain D ⊂ X . Suppose

that x∗ maximizes Z on D, and that Z is Gateaux differentiable (weakly differentiable) at x∗. Then, from
[18, Th.2, p.178],

Z ′(x)|x∗ ≤ 0, (80)

where Z ′(x)|x∗ is the weak derivative of Z at x∗.
From (71), we have the weak derivative of Iλ at F ∗X1

as

I ′λ(FX1FX2)|F ∗X1
=

∫
ĩλ(x1;F

∗
X1
|FX2)dFX1(x1)− Iλ(F ∗X1

FX2). (81)



Now, the derivation of (18) is immediate by inspecting that the weak derivative of the objective of (11) at
F ∗X1

is given by

I ′λ(FX1FX2)|F ∗X1
− θ1

(∫
x21dFX1(x1)−

∫
x21dF

∗
X1

(x1)

)
=

∫
ĩλ(x1;F

∗
X1
|FX2)dFX1(x1)− Iλ(F ∗X1

FX2)

− θ1
(∫

x21dFX1(x1)−
∫
x21dF

∗
X1

(x1)

)
. (82)

Letting (82) be lower than or equal to zero (as in (80)) results in (18).
The equivalence of (18) to (19) and (20) follows similarly to the proof of Corollary 1 in [19, p.210].

F.
(21) is obtained as follows.∣∣∣∣D(p(y|x1, x2)||p(y;FX1FX2)

)∣∣∣∣ =

∣∣∣∣∣
1∑
y=0

p(y|x1, x2) log
p(y|x1, x2)
p(y;FX1FX2)

∣∣∣∣∣
≤
∣∣∣∣H(Y |X1 = x1, X2 = x2)

∣∣∣∣+

∣∣∣∣∣
1∑
y=0

p(y|x1, x2) log p(y;FX1FX2)

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣
1∑
y=0

log p(y;FX1FX2)

∣∣∣∣∣ (83)

= 1−
1∑
y=0

log p(y;FX1FX2)

≤ 1− 2 min

{
log pY (0;FX1FX2), log pY (1;FX1FX2)

}
≤ 1− 2 logQ(

√
P ′1 +

√
P ′2) (84)

<∞,

where (83) is due to the fact that the binary entropy function is upper bounded by 1. (84) is justified as
follows.

min

{
pY (0;FX1FX2), pY (1;FX1FX2)

}
≥ inf

FX1
FX2

:

E[X2
j ]≤P ′j

min

{
pY (0;FX1FX2), pY (1;FX1FX2)

}
= inf

FX1
FX2

:

E[X2
j ]≤P ′j

pY (0;FX1FX2)

= inf
FX1

FX2
:

E[X2
j ]≤P ′j

∫ ∫
Q(x1 + x2)dFX1(x1)dFX2(x2)

= inf
FX1

FX2
:

E[X2
j ]≤P ′j

∫ ∫
Q

(√
x21 +

√
x22

)
dFX1(x1)dFX2(x2) (85)

≥ Q
(√

P ′1 +
√
P ′2

)
, (86)

where (86) is based on the convexity and monotonicity of the function Q(
√
u +
√
v), which is shown in

appendix G.



(22) is obtained as follows.

p(y;FX1|x2) ≥ min

{
p(0;FX1|x2), p(1;FX1|x2)

}
≥
∫
Q (|x1|+ |x2|) dFX1(x1)

=

∫
Q

(√
x21 + |x2|

)
dFX1(x1)

≥ Q
(√

P ′1 + |x2|
)
, (87)

where (87) is due to convexity of Q(α +
√
x) in x for α ≥ 0.

(23) is obtained as follows.∣∣∣∣∣
1∑
y=0

p(y|x1, x2) log
p(y;FX1FX2)

p(y;FX1|x2)

∣∣∣∣∣ ≤ −
1∑
y=0

p(y|x1, x2) log p(y;FX1|x2)−
1∑
y=0

p(y|x1, x2) log p(y;FX1FX2)

≤ −
1∑
y=0

log p(y;FX1|x2)−
1∑
y=0

log p(y;FX1FX2) (88)

≤ −2 logQ
(√

P ′1 +
√
P ′2

)
− 2 logQ

(√
P ′1 + |x2|

)
, (89)

where (88) is from p(y|x1, x2) ≤ 1; and (89) is from (87) and (86).
Note that, (89) is integrable with respect to FX2 due to the concavity of − logQ(α+

√
x) in x for α ≥ 0

as shown in Appendix G. In other words,∫ +∞

−∞

(
−2 logQ

(√
P ′1 +

√
P ′2

)
− 2 logQ

(√
P ′1 + |x2|

))
dFX2(x2) < −4 logQ

(√
P ′1 +

√
P ′2

)
(90)

< +∞. (91)

G. TWO CONVEX FUNCTIONS

Let f(x) = logQ(a+
√
x) for x, a ≥ 0. We have,

f ′(x) = − e−
(a+
√
x)2

2

2
√

2πxQ(a+
√
x)
,

and

f ′′(x) =
e−

(a+
√
x)2

2

4x
√

2πQ2(a+
√
x)

(
(a+

√
x+

1√
x

)Q(a+
√
x)− φ(a+

√
x)

)
, (92)

where φ(x) = 1√
2π
e−

x2

2 . Note that

(1 + at+ t2)Q(a+ t) + aφ(a+ t) >
(
1 + (a+ t)2

)
Q(a+ t) (93)

> (a+ t)φ(a+ t), ∀a, t > 0, (94)

where (93) and (94) are, respectively, due to φ(x) > xQ(x) and (1+x2)Q(x) > xφ(x) (x > 0). Therefore,

(a+
√
x+

1√
x

)Q(a+
√
x) > φ(a+

√
x),

which makes the second derivative in (92) positive, and proves the (strict) convexity of f(x).
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2

Hb(·)

Hb (Q(x2 +A))

Hb (Q(x2 −A))

A

C

B

Q(x2 −A)

C = βHb (Q(x2 +A)) + (1− β)Hb (Q(x2 −A))

Q(x2 +A) βQ(x2 +A) + (1− β)Q(x2 −A)

A = Hb

(

A
∫

−A

Q(x2 + x1)dFX1
(x1)

)

B =
A
∫

−A

Hb (Q(x2 + x1)) dFX1
(x1)

Figure H1: The figure depicting (98) and (100). Note that in the statement of Lemma 3, x2 → +∞. Hence,
we have assumed x2 > A in the figure.

Let f(u, v) = Q(
√
u+
√
v) for u, v ≥ 0. By simple differentiation, the Hessian matrix of f is

H =
e−

(
√
u+
√
v)2

2

√
2π

[
1

2u
√
u

+
√
u+
√
v

4u

√
u+
√
v

4
√
u
√
v√

u+
√
v

4
√
u
√
v

1
2v
√
v

+
√
u+
√
v

4v

]
. (95)

It can be verified that det(H) > 0 and trace(H) > 0. Therefore, both eigenvalues of H are positive, which
makes the matrix positive definite. Hence, Q(

√
u+
√
v) is (strictly) convex in (u, v).

H.
Let A , max{A1, A2}. It is obvious that

Q(x2 + A) ≤
∫ A

−A
Q(x1 + x2)dFX1(x1) ≤ Q(x2 − A). (96)

Therefore, we can write∫ A

−A
Q(x1 + x2)dFX1(x1) = βQ(x2 + A) + (1− β)Q(x2 − A), (97)

for some β ∈ [0, 1]. Note that β is a function of x2. Also, due to concavity of Hb(·), we have

Hb

(∫ A

−A
Q(x1 + x2)dFX1(x1)

)
≥
∫ A

−A
Hb(Q(x1 + x2))dFX1(x1). (98)

From the fact that

Hb(x) ≥ Hb(p)−Hb(a)

p− a
(x− a) +Hb(a), ∀x ∈ [a, p], ∀a, p ∈ [0, 1](a < p), (99)

we can also write∫ A

−A
Hb(Q(x1 + x2))dFX1(x1) ≥

Hb(Q(x2 − A))−Hb(Q(x2 + A))

Q(x2 − A)−Q(x2 + A)

(∫ A

−A
Q(x1 + x2)dFX1(x1)−Q(x2 + A)

)
+Hb(Q(x2 + A))

= βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A)), (100)



where (97) and (99) have been used in (100). (98) and (100) are depicted in Figure H1.
From (97) and (100), we have

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) ≤
∫ A
−AHb(Q(x1 + x2))dFX1(x1)

Hb

(∫ A
−AQ(x1 + x2)dFX1(x1)

) ≤ 1. (101)

Let
β∗ , arg min

β

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) . (102)

This minimizer satisfies the following equality

d

dβ

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

)
∣∣∣∣

β=β∗
= 0. (103)

Therefore, we can write
βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) ≥ β∗Hb(Q(x2 + A)) + (1− β∗)Hb(Q(x2 − A))

Hb

(
β∗Q(x2 + A) + (1− β∗)Q(x2 − A)

) (104)

=

Hb(Q(x2−A))−Hb(Q(x2+A))
Q(x2−A)−Q(x2+A)

H ′b

(
β∗Q(x2 + A) + (1− β∗)Q(x2 − A)

) (105)

≥
Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

H ′b(Q(x2 + A))
, (106)

where (104) is from the definition in (102); (105) is from the expansion of (103), and H ′b(t) = log(1−t
t

) is
the derivative of the binary entropy function; (106) is due to the fact that H ′b(t) is a decreasing function.

Applying L’hospital’s rule multiple times, we obtain

lim
x2→+∞

Hb(Q(x2−A))−Hb(Q(x2+A))
Q(x2−A)−Q(x2+A)

H ′b(Q(x2 + A))
= lim

x2→+∞

Hb(Q(x2 − A))

(
1− Hb(Q(x2+A))

Hb(Q(x2−A))

)
Q(x2 − A)

(
1− Q(x2+A)

Q(x2−A)

)
log(1−Q(x2+A)

Q(x2+A)
)

= lim
x2→+∞

− Hb(Q(x2 − A))

Q(x2 − A) log(Q(x2 + A))

= lim
x2→+∞

e−
(x2−A)2

2 log(Q(x2 − A))

e−
(x2−A)2

2 log(Q(x2 + A)) + Q(x2−A)
Q(x2+A)

e−
(x2+A)2

2

= lim
x2→+∞

log(Q(x2 − A))

log(Q(x2 + A)) + 1

= lim
x2→+∞

Q(x2 + A)eAx2

Q(x2 − A)e−Ax2

= 1 (107)

From (101), (106) and (107), (35) is proved. Note that the boundedness of X1 is crucial in the proof.
In other words, the fact that Q(x2 − A)→ 0 as x2 → +∞ is the very result of A < +∞.
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